Proof of Ceva's Theorem

Problem: Prove Ceva's theorem, that is, in any triangle $\triangle A B C$ the cevians $A D, B E, C F$ are concurrent if and only if

$$
\begin{gathered}
\frac{B D}{D C} \cdot \frac{C E}{E A} \cdot \frac{A F}{F B}=1 \text { (in simple form) } \\
\text { or } \\
\frac{\sin B A D}{\sin D A C} \cdot \frac{\sin A B E}{\sin E B C} \cdot \frac{\sin B C F}{\sin F C A}=1 \text { (in trigonometric form) }
\end{gathered}
$$

Note: Cevian is the line segment that connects a vertie of a triangle with the opposite side. And when three or more lines all pass through a common point, is called concurrent.

Solution: The proof of Ceva's Theorem is based on the area of triangle.

Lemma: The areas of triangles with equal altitude are proportional to the bases of the triangles.

Note: $(A B C)$ denotes the area of $\triangle A B C$.

Let AD, BE, and CF concur at point G. So
we have: $\frac{B D}{D C}=\frac{(B D A)}{(C D A)}=\frac{(B D G)}{(C D G)}$

$$
\frac{B D}{D C}=\frac{(B D A)-(B D G)}{(C D A)-(C D G)}=\frac{(A B G)}{(A C G)}
$$

Similarly, we can get $\frac{C E}{C A}=\frac{(B C G)}{(B A G)}$ and $\frac{A F}{F B}=\frac{(C A G)}{(C B G)}$
So, $\frac{A F}{F B} \cdot \frac{B D}{D C} \cdot \frac{C E}{E A}=\frac{(C A G)}{(C B G)} \cdot \frac{(A B G)}{(A C G)} \cdot \frac{(B C G)}{(B A G)}=1$.
For the converse, suppose $\frac{A F}{F B}=\frac{B D}{D C}=\frac{C E}{E A}=1$ and G be the point of intersection of $A D$ and $B E$. Let $C G$ meet $A B$ at \bar{F}. Then by forward argument we have

$$
\frac{B D}{D C} \cdot \frac{C E}{E A} \cdot \frac{A \bar{F}}{\bar{F} B}=1
$$

And hence we have

$$
\frac{A F}{F B}=\frac{A \bar{F}}{\bar{F} B}
$$

So that both F and \bar{F} divide $A B$ in the same ratio and must therefore be the same point. Hence the
 theorem is proved.

