Area Formula

Area of a segment:

For Degrees,

$$\mathbf{A} = (\mathbf{r}^2 \div \mathbf{2}) \times ((\pi \div \mathbf{180} \times \mathbf{\theta}) - \sin \mathbf{\theta})$$

For Radians,

$$\mathbf{A} = (\mathbf{0.5} \times \mathbf{r}^2) \times (\mathbf{\theta} - \sin \mathbf{\theta})$$

Where:

A = Area

r = Radius

 $\pi = \text{Pi } (3.14)$

 $\theta = Angle$

0.5 = A constant

180 = A constant

Area of a sector:

If calculated in degrees:

$$\mathbf{A} = (\mathbf{\theta} \div 360) \times (\pi \times \mathbf{r}^2)$$

If calculated in radians:

$$\mathbf{A} = \mathbf{0.5} \times \mathbf{r}^2 \times \mathbf{\theta}$$

Where

A = Area

 θ = Angle (measured in radians or degrees)

 $\pi = Pi (3.14)$

r = radius

360 = A Constant

0.5 = A Constant

Area of a Ellipse:

 $A = \pi x ((w \div 2) x (h \div 2))$

Where:

A = Area

 $\pi = \text{Pi } (3.14)$

 $w = the \ width$

h = the height

Area of a Rhombus:

 $A = (w x h) \div 2$

Where:

A = Area

w = the width

h = the height

Area of a Triangle:

 $A = 0.5 \times b \times h$

Where:

A = area

0.5 = a constant

b = length of the base (bottom)

h = the height

Area of a Trapezium:

A = 0.5 x (a + b) x h

Where

A = The Area

a =The length of the top

b =The length of the base

h = The height

Area of a Parallelogram:

 $A = b \times h$

Where

A = The Area

b =The length of the base

h = The height

Area of a Arc Length:

Arc length (A) = $(\theta \div 360) \times (2 \times \pi \times r)$

or

 $A = (\theta \div 360) \times (D \times \pi)$

Where:

A = Arc length

 θ = Arc angle (in degrees)

r = radius of circle

D = Diameter of circle

Area of a Octagon:

first calculate the area of one triangle

Area of a triangle = $0.5 \times Base \times Height$

There are 8 triangles in an octagon, so Area of a one triangle x 8

or

 $= 2 x (1 + v2) x B^2$

Area of a Annulus:

The area = π x (Outer Radius ² –Inner radius ²)

Where:

 $\pi = \text{Pi } (3.14)$

Area of a Circle:

The area = π x Radius ²

Where:

 $\pi = \text{Pi } (3.14)$

Area of a Square:

The area = Height x Width

Area of a Rectangle:

The area = Height x Width

Powered by mymathtables.com