Area Formula

Area of a segment:

For Degrees,
$A=\left(r^{2} \div 2\right) \times((\pi \div 180 \times \theta)-\sin \theta)$
For Radians,
$A=\left(0.5 \times r^{2}\right) \times(\theta-\sin \theta)$
Where:
A = Area
$r=$ Radius
$\pi=\operatorname{Pi}(3.14)$
$\theta=$ Angle
$0.5=\mathrm{A}$ constant
$180=\mathrm{A}$ constant

Area of a sector:

If calculated in degrees:
$A=(\theta \div 360) \times\left(\pi \times \mathbf{r}^{2}\right)$
If calculated in radians:
$\mathrm{A}=0.5 \times \mathrm{r}^{2} \times \theta$
$\mathrm{A}=$ Area
$\theta=$ Angle (measured in radians or degrees)
$\pi=\operatorname{Pi}(3.14)$
$r=$ radius
$360=\mathrm{A}$ Constant
$0.5=\mathrm{A}$ Constant

Area of a Ellipse:

$\mathrm{A}=\pi \mathrm{x}((\mathrm{w} \div 2) \mathrm{x}(\mathrm{h} \div 2))$
Where:
A = Area
$\pi=\operatorname{Pi}(3.14)$
$\mathrm{w}=$ the width
$\mathrm{h}=$ the height

Area of a Rhombus:

$A=(w x h) \div 2$
Where:
$\mathrm{A}=\mathrm{Area}$
$\mathrm{w}=$ the width
$\mathrm{h}=$ the height

Area of a Triangle:

$\mathrm{A}=0.5 \mathrm{xbxh}$
Where:
$\mathrm{A}=$ are a
$0.5=$ a constant
$\mathrm{b}=$ length of the base (bottom)
$\mathrm{h}=$ the height

Area of a Trapezium:

$\mathrm{A}=0.5 \times(\mathrm{a}+\mathrm{b}) \times \mathrm{h}$
Where
$\mathrm{A}=$ The Area
$a=$ The length of the top
$\mathrm{b}=$ The length of the base
$\mathrm{h}=$ The height

Area of a Parallelogram:

$\mathrm{A}=\mathrm{b} \times \mathrm{h}$
Where
$\mathrm{A}=$ The Area
$b=$ The length of the base
$\mathrm{h}=$ The height

Area of a Arc Length:

Arc length $(A)=(\theta \div 360) \times(2 \times \pi \times r)$
or
$\mathrm{A}=(\theta \div 360) \times(\mathrm{D} \times \pi)$
Where:
A = Arc length
$\theta=$ Arc angle (in degrees)
$r=$ radius of circle
$\mathrm{D}=$ Diameter of circle

Area of a Octagon:

first calculate the area of one triangle
Area of a triangle $=0.5 \times$ Base \times Height
There are 8 triangles in an octagon, so Area of a one triangle x 8
or
$=2 \mathrm{x}(1+\mathrm{v} 2) \times \mathrm{B}^{2}$

Area of a Annulus:

The area $=\pi \times\left(\right.$ Outer Radius ${ }^{2}-$ Inner radius $\left.{ }^{2}\right)$
Where:
$\pi=\operatorname{Pi}(3.14)$

Area of a Circle:

Where:
$\pi=\operatorname{Pi}(3.14)$

Area of a Square:

The area $=$ Height x Width

Area of a Rectangle:

The area $=$ Height x Width

Powered by mymathtables.com

